Gestion d’une exposition accidentelle

Oreillons  

 

1) Considérations générales

• Famille : Paramyxoviridae (Myxovirus parotidis), divers sérotypes et génotypes 
• Strictement humain
• Hautement contagieux via aérosol de sécrétions respiratoires (transmission gouttelettes)
• Rapidement détruit par chaleur, formol, éther, chlore, rayons UV 
• Durée moyenne d’incubation : 12 à 25 jours
• Contagiosité : de 5 jours avant les symptômes jusqu’à 9 jours après 

2) Prévention de la transmission hospitalière

• Contrôle de la source infectieuse
Chambre individuelle, Précautions gouttelettes pendant 9 jours après le début des symptômes
Port du masque chirurgical obligatoire en cas de circulation en dehors de la chambre 
Hygiène de la toux

• Protection du personnel 
Port d’un masque chirurgical (Pour le personnel : port du masque indiqué lorsque le travail s’effectue dans un rayon de 1 à 2 mètres du patient, mais pas nécessaire si simple passage dans la chambre)

3) Gestion d’une exposition professionnelle

•Prophylaxie : Une vaccination de rattrapage peut être administrée aux personnes qui n’ont pas reçu antérieurement les deux doses de Rougeole-Rubéole
Oreillons (RRO) recommandées, et est recommandées pour celles qui ont (eu) des contacts avec des personnes infectées. Néanmoins, la vaccination n’enraye pas le processus d’incubation. 

Si l’entourage a été correctement vacciné, aucune action n’est à entreprendre. A l’heure actuelle, il n’y a pas assez d’arguments pour recommander une troisième dose du vaccin.
Par contre l’éviction du personnel ayant contacté les oreillons doit être imposée jusqu’à 9 jours après le début de la parotidite. De même, le personnel non immunisé qui a été exposé aux oreillons doit être écarté du douzième jour après la première exposition jusqu’au 26ème jour après la dernière exposition puisque la période d’incubation est de 12 à 25 jours

Rougeole

 

1) Considérations générales

• Paramyxovirus, réservoir humain, pas de portage asymptomatique 
• Virus enveloppé 
– Sensible à la chaleur et à la lumière 
– Inactivé après 2h dans air et les surfaces 
• Incubation : moyenne 10j (5-21j); exposition –> prodromes 
• Clinique 
– Prodromes (2-4j –>7j): Forte fièvre, toux, coryza, conjonctivite 
– Rash 
– Anorexie, diarrhée (8%), adénopathies généralisées 

2) Prévention de la transmission hospitalière

• Une des maladies infectieuses les plus contagieuses : 
– R0 : 7.7 à 15 
– Taux d’attaque de 75-90% chez personnes   susceptibles 
• Virus présent au niveau des sécrétions respiratoires (nasales, pharyngées) 
– 4 jours avant le rash 
– 4- 5 jours après le rash 
• Transmission aérienne + contact avec les sécrétions infectées (autoinoculation des muqueuses via mains contaminées par sécrétions infectées) 
• Contrôle de la source infectieuse
– Chambre individuelle, isolement aérien 
– Port du masque chirurgical par le patient quand en dehors de la chambre 
•Protection du personnel  
– Port d’un Masque FFP2 (éliminer après utilisation)
  Dès l’entrée dans la chambre (Même lorsque le patient n’est pas présent)

3) Gestion d’une exposition professionnelle

• Catégorisation du personnel selon son statut d’immunisation anti-rougeole
1. En ordre de vaccination (2 vaccins !) ou 
2. Sérologie positive (présence d’anticorps IgG anti-rougeole) (L’anamnèse relative aux antécédents derougeole n’est pas suffisamment fiable pour affirmer le statut d’immunisation d’une personne)
• Personnes non immunisées 
– ◦Ecartement du J5 au J21 post-exposition 
– Y compris si prophylaxie post-exposition
•◦Prophylaxie post-exposition (PEP) 
– Vaccination efficace dans un délai de 72h 
– Immunoglobulines : efficaces dans un délai de 6 j mais les immunoglobulines spécifiques ne sont pas disponibles en Belgique 
– efficacité dépend de la dose, taux d’IgG anti rougeole dans préparation 
Efficacité 85 % (CI 95%: 27-96%) (Vaccin >Immunoglobulines) 
•Les immunoglobulines IV peuvent être considérées en cas d’exposition d’un patient immuncompromis non vacciné

Varicelle

 

1) Considérations générales

• Haute contagiosité 
• Transmission à 90% des contacts à domicile qui sont non immuns 
• Transmission aérienne + contact avec les lésions et les objets contaminés (draps, vêtements…) 
• Virus pénètre via la conjonctive de l’œil et le tractus respiratoire 
• Contagiosité 2 j avant le rash jusqu’ à la chute des croûtes 
• Prodromes : 1-2j; discret, malaise T° (surtout chez adultes) 
• Incubation: durée moyenne 2 semaines (10-21 j)

2) Prévention de la transmission hospitalière

• Contrôle de la source 
– Chambre individuelle, isolement aérien 
– Port du masque chirurgical cas quand en dehors de la chambre 

•Protections personnelles 
– Masque FFP2 (éliminer après utilisation) 
– Blouse + gants 

3) Gestion d’une exposition professionnelle

• Situations ‘piège’ à l’hôpital
– Proches d’un enfant/adulte hospitalisé avec varicelle 
– Travailleurs de santé non immuns, parents de jeunes enfants 
– Adultes avec un Zona 

•Catégorisation du personnel selon son statut d’immunisation contre la varicelle

1. En ordre de vaccination (2 vaccins !) ou 
2.Sérologie positive (présence d’anticorps IgG anti-varicelle) (L’anamnèse relative au antécédents de varicelle n’est pas suffisamment fiable pour affirmer le statut d’immunisation d’une personne)

4) Gestion d’un cas non immun exposé

• Vaccination : réduit le risque de développer une varicelle 
– ◦ diminue de 90% si donné dans les 72h 
– ◦ diminue de 70% si donné dans les 5j post exposition 
– En cas de varicelle, le vaccin diminue sa sévérité de 90-95% 

•Ecartement ou port du masque, auto-évaluation journalière et écartement au moindre prodrome: 
– J 10 au J 21 j post contact 
– idéalement même si administration d’une prophylaxie post-exposition

On a lu pour vous

A. Gesser-Edelsburg, R. Cohen, M. Zemach, A. MirHalav.

Discourse on hygiene between hospitalized patients and health care workers as an accepted norm: Making it legitimate to remind health care workers about hand hygiene.

American Journal of Infection Control, Volume 48, Issue 1, January 2020, Pages 61-67

Background 
Despite World Health Organization recommendations that patients should play a role in encouraging hand hygiene (HH) as a means of preventing infection, patient engagement remains an underused method. From the perspectives of hospitalized patients (HPs) and health care workers (HCWs) at 2 major public hospitals in Haifa, Israel, this research investigated (1) HP barriers to reminding HCWs to maintain HH, (2) HCW barriers to giving HPs instruction on proper hygiene, (3) what could help HPs and HCWs overcome these barriers, and (4) how video clips can be used to devise tailored strategies governing discourse on HH between HCWs and HPs.

Methods
Intervention type 2 design and examination of 2 population groups—HPs and HCWs—before and after intervention by means of mixed methods research.

Results
Both HPs and HCWs reported partial knowledge, embarrassment, and fears regarding commenting to staff, as well as a lack of cultural adaptation. The interviewees indicated that the video clips granted legitimacy to reminding HCWs about hygiene through strategies designed to identify and solve barriers, authenticity, and cultural adaptation.

Conclusions
To overcome HP and HCW barriers to maintaining HH, tailored video clips on HH should specify barriers and solutions with which they can both identify, thus turning discourse on HH into an accepted norm. 

Jeanes P. G. Coen,  N. S.Drey, D. J.Gould 

Moving beyond hand hygiene monitoring as a marker of infection prevention performance: Development of a tailored infection control continuous quality improvement tool

American Journal of Infection Control, Volume 48, Issue 1, January 2020, Pages 68-76

Background
Infection control practice compliance is commonly monitored by measuring hand hygiene compliance. The limitations of this approach were recognized in 1 acute health care organization that led to the development of an Infection Control Continuous Quality Improvement tool.

Methods
The Pronovost cycle, Barriers and Mitigation tool, and Hexagon framework were used to review the existing monitoring system and develop a quality improvement data collection tool that considered the context of care delivery.

Results
Barriers and opportunities for improvement including ambiguity, consistency and feasibility of expectations, the environment, knowledge, and education were combined in a monitoring tool that was piloted and modified in response to feedback. Local adaptations enabled staff to prioritize and monitor issues important in their own workplace.

The tool replaced the previous system and was positively evaluated by auditors. Challenges included ensuring staff had time to train in use of the tool, time to collect the audit, and the reporting of low scores that conflicted with a target-based performance system.

Conclusions
Hand hygiene compliance monitoring alone misses other important aspects of infection control compliance. A continuous quality improvement tool was developed reflecting specific organizational needs that could be transferred or adapted to other organizations.

A. Benudis, S. Stone, A. Ssait, I. Mahoney, L. L. Price, A.Moreno-Koehler, E.Anketell, S.Doron

Pitfalls and Unexpected Benefits of an Electronic Hand Hygiene Monitoring System

American Journal of Infection Control, Volume 47, Issue 9, September 2019, Pages 1102-1106

Background
No single strategy is more effective than proper hand hygiene (HH) in reducing the spread of nosocomial infections. Unfortunately, health care worker compliance with HH is imperfect. We sought to improve HH compliance using an electronic hand hygiene monitoring system (EHHMS) in 2 units to collect unbiased data and provide feedback.

Methods
In this prospective, quasi-experimental study, the Hyginex EHHMS was installed in 2 units at Tufts Medical Center. Ninety-one bracelets were assigned, and electronic data were collected over 8 months. Human observations continued. We compared HH compliance as measured by human observation before, during, and after EHHMS implementation. Pre- and post-implementation surveys were distributed to staff.

Results
The number of electronically captured HH compliance observations was small due to infrequent bracelet use after month 2 of the intervention. HH compliance, as determined by human observation, increased by an average of 1.3 percentage points per month (P = .0005). Survey responses revealed negative attitudes about the EHHMS before and after its implementation.

Conclusions
Despite poor EHHMS participation and negative attitudes toward its implementation, HH compliance, as measured by human observation, significantly improved. Hospitals considering implementing an EHHMS should look to refine the intervention to encourage health care worker participation.

S. W. Bondurant, C. M.Duley, J. W.Harbell

Demonstrating the persistent antibacterial efficacy of a hand sanitizer containing benzalkonium chloride on human skin at 1, 2, and 4 hours after application

American Journal of Infection Control, Volume 47, Issue 8, August 2019, Pages 928-932

Background
Use of hand sanitizers has become a cornerstone in clinical practice for the prevention of disease transmission between practitioners and patients. Traditionally, these preparations have relied on ethanol (60%-70%) for bactericidal action.

Methods
This study was conducted to measure the persistence of antibacterial activity of 2 preparations. One was a non-alcohol-based formulation using benzalkonium chloride (BK) (0.12%) and the other was an ethanol-based formulation (63%) (comparator product). The persistence of antibacterial activity was measured against Staphylococcus aureus using a technique modification prescribed in American Society for Testing and Materials protocol E2752-10 at up to 4 hours after application.

Results
The test product (BK) produced a marked reduction in colony-forming units at each of the 3 time points tested (3.75-4.16-log10 reductions), whereas the comparator produced less than 1-log10 reduction over the same time. The differences were highly significant.

Discussion
In the course of patient care or examination, there are instances where opportunities exist for the practitioner’s hands to become contaminated (eg, key boards and tables). Persistent antibacterial activity would reduce the chances of transfer to the patient.

Conclusions
These results show a major improvement in persistent antibacterial activity for the BK formulation compared to the comparator ethanol-based formulation.

M. P. Smiddy, O. M.Murphy, E. Savage, J. P. Browne

The influence of observational hand hygiene auditing on consultant doctors’ hand hygiene behaviors:
A qualitative study

American Journal of Infection Control, Volume 47, Issue 7, July 2019, Pages 798-803

Background
Compliance with hand hygiene guidelines reduces the risk of health care–associated infection, yet doctors are less compliant than other health care workers. Use of observational hand hygiene auditing with targeted individualized feedback was implemented, with improved hand hygiene of consultant doctors; however, the factors that influenced this were not explained by previous quantitative data. The aim was to explore consultant doctors’ opinions about the influence of observational hand hygiene auditing with individualized feedback on hand hygiene behavior.

Methods
Using the Theoretical Domains Framework, we conducted 12 semi-structured in-depth interviews with consultant doctors who experienced the observational hand hygiene audit and feedback intervention. Data were analyzed using a thematic analysis approach.

Results
Analysis identified 8 domains of the Theoretical Domains Framework, with 5 dominant domains: (1) behavioral regulation: receiving written individualized audit feedback positively influenced practice; (2) knowledge: provision of specific individualized feedback improved performance; (3) reinforcement: audit highlighted substandard practices; (4) social professional role and identity: audit reports triggered profession-associated competitive motivation; and (5) environmental context and resources: auditing was perceived to be synonymous with strong organizational safety culture.

Conclusions
In this study, provision of individualized targeted feedback was a critical component of observational hand hygiene auditing.

E. Evashwick, S. Cumplido, G. Eleby, T. Washington, S. Krishna, M. Almario, A. Hammonds-Reed, S. Fawcett, M. Ben-Aderet, J. Grein

A Tale of Two Departments: How Collaboration Between Infection Prevention and Sterile Processing Departments Can Improve Patient Safety

American Journal of Infection Control, Volume 47, Issue 6, Supplement, June 2019, Page S12

Background
Sterile Processing Departments (SPD) play a critical role in patient safety by proper sterilization of surgical instruments. Infection Preventionists (IPs) are often responsible for overseeing Infection Control (IC) standards for SPD, but frequently lack training in sterile processing that can create challenges. In 2015 we developed a quality improvement project  improving IP knowledge of SPD processes and compliance with IC measures.

Methods
An audit tool was created utilizing observations, staff responses to IC questions and documentation review. To gain familiarity with SPD processes and improve audits, IPs attended weekly SPD meetings, Skills Fairs, APIC webinars and professional conferences . Audits were developed from nationally recommended practices, done bimonthly by IC personnel and reviewed quarterly with SPD leadership. IPs provided education for staff when gaps were identified. Implementation of SPD audits occurred concurrently with other OR quality improvement projects to facilitate improved instrument reprocessing

Results
Average overall audit scores increased in the first year from 67% in 2015 to 84% in 2016 (p < 0.001 by Chi squared test). Although overall average audit scores remained consistent since 2016, scores for questions related to employee knowledge of cleaning technique increased from 59% in 2015 to 90% in 2018 (p < 0.001). We observed a correlation between increasing SPD audit scores and decline in bioburden events from a yearly average of 3.29 events per 1000 procedures in 2015 to 1.15 events per 1000 procedures in 2018 (p < 0.001).

Conclusions
By attending SPD conferences, staff meetings, and skills fairs, IPs developed an audit tool to improve SPD oversight. Frequent auditing and education improved audit scores and correlated with an improvement in SPD function, as measured by decreased bioburden events. This project demonstrates how collaboration between the IP and SPD departments can lead to improved compliance and patient safety.

W. Kessler, T. Powers, FAPIC

Innovative Surveillance and Execution of the World Health Organization’s 5 Moments of Hand Hygiene in an Acute-care Hospital

American Journal of Infection Control, Volume 47, Issue 6, Supplement, June 2, 19, Page S23

Background
Hand hygiene (HH) is critical to the prevention of serious infections in the healthcare setting. Caregivers have been found to have suboptimal HH practices. The World Health Organization (WHO) 5 Moments of HH program was implemented in an acute-care hospital in an effort to increase caregiver participation, renew interest, and raise visibility.

Methods
Over a four month period in 2018, 128 participants were surveyed with an abbreviated WHO HH Perception Survey for Health-Care Workers in an acute-care and critical access hospital. Of the respondents, 67% were from nursing or ancillary nursing services. The abbreviated WHO HH Perception survey was utilized as a way to understand and improve caregiver perceptions and practices related to HH. A question highlighting HH improvement and the receipt of regular results regarding HH performance was targeted.

Results
On the WHO HH Self-Assessment Framework (SAF) the acute-care hospital scored 280 (range of 0 – 500), intermediate, for HH facility level and obtained a satisfactory level of 12 for HH Leadership. On a scale of 1 – 7, 73% of overall participants rated “receiving regular feedback regarding HH performance” ≥ 5 on the WHO HH perceptions survey. Based on this feedback and the WHO HHSAF, the acute-care hospital implemented a multimodal approach to HH practices through a novel framework.

Conclusions
This targeted approach illuminated participant values regarding regular feedback on HH performance. In response, infection prevention implemented secret shopper HH cameras that rotate departments in conjunction with frequent rounding on units to provide immediate feedback on HH compliance and missed opportunities. Feedback was provided to floor nurses, nurse managers, and assistant nurse managers. Additionally, a dynamic traveling HH campaign was implemented to socialize the WHO 5 Moments. The campaign asked all staff to participate in HH activities and to renew their commitment to HH through unit specific posters and signatures.

C. Mitchell, M. Ehly, C. Sacksteder, K. Zabriskie

Presentation Number ISR-76

Hand hygiene observations…not so secret anymore

American Journal of Infection Control, Volume 47, Issue 6, Supplement, June 2019, Page S29

Background
Tracking hand hygiene compliance (HHC) is an important function in healthcare to monitor compliance and validate accountability. Using a covert approach to monitoring hand hygiene limits the ability to collect a sufficient number of observations that are non-biased and highly reliable. Our objective is to create a program to reduce bias, be more reliable, yield a greater number of observations, and provide real time feedback.

Methods
We implemented an overt observation program to collect data and provide real-time feedback to staff at a 900-bed multi-facility academic medical center. Paid overt observers, who wear blue vests, used an electronic survey tool on mobile tablets to collect hand hygiene observations on all staff disciplines entering and exiting patient care areas. Observers had to collect both the entry and exit of the staff member to count as one observation. The observers also gave immediate feedback, both positive acknowledgment and constructive reminders for missed opportunities. Captured in real time, the data was distributed weekly and monthly to unit and discipline leadership.

Results
The total number of observations from the overt program was 24,598 for fiscal year (FY) 2016 compared to 8,548 covert observations in FY 2015. HHC improved from 68% to 88% from FY 2016 to FY 2017. The increase in HHC was statistically significant using the Chi square test. Verbal feedback given to staff increased from 67% in FY 2017 to 88% in FY 2018.

Conclusions
Since overt observers are not unit specific, they are able to provide an unbiased perspective when gathering observations. Assessments of the program are continuous. Observers complete competencies on an established schedule to ensure accuracy and consistency of each observer. With the implementation of the overt program, there was a statistically significant increase in the number of observations collected, improved compliance, and the ability to give and track feedback.

C. M. Hou, M. C.Rosenberg, R. A. Steer, C. Criccon, K. Campos

Presentation Number ISR-81

A Motion-Detection Electronic Hand Hygiene Verbal Reminder Increases Adherence in a Standard Precaution Room

American Journal of Infection Control, Volume 47, Issue 6, Supplement, June 2019, Page S31

Background
Hand hygiene rates remain suboptimal. We previously reported the effect of a motion-detection verbal hand hygiene reminder installed at the door of a contact isolation room and on hand hygiene for nurses, versus all others. This study evaluates the device’s effect on the hand hygiene rate for a standard precaution hospital room.

Methods
A wireless motion sensor was installed above a standard precaution room door. When an individual entered or exited the room, the device’s speaker announced a verbal hand hygiene reminder. The individual was credited with adherence by secret observers only if observed to wash hands at both entry and exit. This prospective study included 174 baseline measurements (before motion-detection sensor deployed) and 111 measurements during the intervention period (the period during which the sensor was installed), for a total of 285 observations.

Results
Before the wireless sensor was deployed, we found that without the verbal reminder, 6% (n=11) washed their hands at both entry and exit and 94% (n=163) did not. During the intervention, adherence increased to 38% (n=42), while 62% (n=69) did not. As different individuals might be observed before and after sensor installation, we performed a chi-square test for independence using Yates’ correction for continuity with SPSS 25 to compare rates of adherence. With the sensor, there was a statistically significant (X(squared)Yates(1) = 42.41, ϕ = .40, p<0.001) increase in hand hygiene adherence reflecting a nine-fold increase in the likelihood of compliance (odds ratio = 9.02, 95% Confidence Level 4.39-18.55)).

Conclusions
In this study, the use of a wireless motion sensor to provide verbal reminders significantly increased hand hygiene adherence at both entry and exit for a standard precaution room. Thus, an audio reminder triggered by motion detection can increase hand hygiene adherence and may curb the incidence of nosocomial infections.

E. Yoo, L. Ursua, R. Clark, J. Seok, J. Jeon, H. BinKim

The effect of incorporating covert observation into established overt observation-based hand hygiene promotion programs

American Journal of Infection Control, Volume 47, Issue 5, May 2019, Pages 482-486

Background
Covert observation (CO) is reliable for measuring hand hygiene compliance (HHC). However, the benefit of adding CO to overt observation (OO) is uncertain. We evaluated whether incorporating CO into an OO-based hand hygiene (HH) promotion program improves HH rate.

Methods
Health care worker’s HH activities were observed through 5 monitoring sessions (2 in phases 1 and 2 and 1 in phase 3) of simultaneous CO and OO. An intervention was applied—barrier identification interview—only in phase 2.

Results
Overall HHC was 91.0% for OO, and 49.3% for CO. HHC in phase 1 was not changed by repeated CO (34.7% and 34.0%, P = .70). HHC based on CO increased to 66.9% in phase 2 after the application of an intervention (P < .01), but decreased to 57.5% in phase 3 (P < .01). HHC based on OO increased significantly between only the first and second sessions in phase 2 (90.8% and 94.5%, respectively, P = .01).

Discussion
Although CO did not significantly change behavior, HHC with CO responded promptly to the application and cessation of a new intervention.

Conclusions
CO reflects HHC change more reliably than does OO. However, it is uncertain whether CO will improve HHC.

J. A.Woodard, S. Leekha, S. S.Jackson, K. A.Thom

Beyond entry and exit: Hand hygiene at the bedside

American Journal of Infection Control, Volume 47, Issue 5, May 2019, Pages 487-491

Background
We aimed to assess compliance, knowledge, and attitudes regarding the World Health Organization (WHO) 5 moments for hand hygiene (HH).

Methods
We assessed HH compliance from July-August 2016, using a modified WHO HH observation form. A 26-question survey was used to assess health care personnel (HCP) knowledge, opinions, and barriers to HH. A subgroup of HCPs participated in a 2-round focused survey to assign priority to the moments.

Results
Three hundred two HH opportunities were observed in 104 unique HCP-patient interactions. HH was performed at 106 (35%) opportunities, 37% (25 of 68) before touching a patient, 9% (6 of 70) before aseptic procedures, 5% (1 of 22) after body fluid exposure or risk, 63% (55 of 88) after touching a patient, and 35% (19 of 54) after touching patient surroundings. Two hundred eighteen HCPs completed the survey; 63 (29%) were familiar with the WHO 5 moments but only 13 (21%) were able to recall all 5 moments. In the focused surveys, 46% (6 of 13) ranked “before aseptic procedure” as the most important HH moment, and 86% (11 of 13) identified “after touching patient surroundings” as the least important.

Conclusions
We found frequent opportunities for HH with infrequent compliance. Lack of recognition of opportunities at the bedside and frequent glove use may contribute to lower compliance.

J. Baloh, K. A.Thom, E.Perencevich, C. Rock, G. Robinson, M. Ward, L. Herwaldt, H. S. Reisinger

Hand hygiene before donning nonsterile gloves: Healthcare workers’ beliefs and practices

American Journal of Infection Control, Volume 47, Issue 5, May 2019, Pages 492-497

Background
Understanding the perceptions and beliefs of health care workers (HCWs) regarding glove use and associated hand hygiene (HH) may be informative and ultimately improve practice. Research in this area is limited. This study examined the practices and beliefs of HCWs surrounding the use of nonsterile gloves and HH before gloving.

Methods
The study was conducted at 3 large academic US hospitals using a parallel convergent mixed-method design. To estimate compliance rates, the gloving and HH practices of HCWs were observed at entry to patient rooms for 6 months. Interviews were conducted with 25 providers, nurses, and nursing assistants to investigate their beliefs and perceptions of these practices.

Results
Observed HH compliance rates before gloving were 42%, yet in the interviews most HCWs reported 100% compliance. Observed compliance with gloving before entering contact precaution rooms was 78%, although all HCWs reported always gloving for standard and contact precautions. Most HCWs described using gloves more often than necessary. HCWs generally use gloves for their own safety and sanitize hands before gloving for patient safety. Numerous barriers to compliance with HH before gloving were discussed, including beliefs that gloves provide enough protection.

Conclusions
HH and glove use are highly intertwined in clinical practice and should be considered jointly in infection prevention improvement efforts.

E. T. Paul, M. Kuszajewski, A. Davenport, J. A.Thompson, B. Morgan

Sleep safe in clean hands: Improving hand hygiene compliance in the operating room through education and increased access to hand hygiene products

American Journal of Infection Control, Volume 47, Issue 5, May 2019, Pages 504-508

Background
Hand hygiene compliance is low among anesthesia providers in the operating room, which places patients at risk of preventable infections. The goal of this project was to improve hand hygiene compliance by educating anesthesia providers on the World Health Organization’s 5 indications for hand hygiene, and increasing access to hand hygiene products in the operating room.

Methods
Observations of hand hygiene in the operating room took place in 3 phases: preimplementation, postimplementation, and 60 days postimplementation.

Results
The results showed significant improvements in compliance for each of the 5 indications for hand hygiene as well as overall compliance. Each of the 3 phases of anesthesia demonstrated significant improvement as well. The results also showed a significant decrease in both glove use and use of the portable hand sanitizer device.

Discussion
Education and monitoring of hand hygiene among anesthesia providers in the operating room can improve hand hygiene compliance.

Conclusions
Although the use of the portable device declined, further studies could focus on observing single anesthesia providers instead of a preceptor/student combination, and also examine proximity to hand hygiene products in relation to compliance.

F. Sands, L. Fairbanks

How clean is “hygienically clean”: Quantitative microbial levels from samples of clean health care textiles across the United States

American Journal of Infection Control, Volume 47, Issue 5, May 2019, Pages 509-514

Background
In the United States, the laundry industry has not reliably measured microbial levels on hygienically clean textiles. The aim of this study was to quantitatively measure the microbial levels found on a sample of hygienically clean textiles.

Methods
Forty-eight health care textile samples were collected from hygienically clean linen scheduled to be used on 3 different patient care units. Samples were taken at 2 separate points in time representing laundry facility processing practices and hospital linen management practices. United States Pharmacopeia 61 testing was completed using a pour plate culturing method, producing a total aerobic microbial count and a total yeast and mold count.

Results
Of the samples, only 27% had a total aerobic microbial count below the expected 100 colony-forming unit level (range, 9-40,000) versus 81% (range, 9-1,000) for total yeast and mold count. Median microbial counts for the 2 separate time points across the 3 different patient care units were also higher than expected.

Conclusions
As far as we know, this study is a first step by the laundry industry to understand what quantitative microbial levels are currently found on hygienically clean health care textiles. These types of data can assist the industry in establishing appropriate outcome targets for process improvement initiatives.

M. M. Plemmons, J. Marcenaro, M. H.Oermann, J. Thompson, C. A.Vacchiano

Improving infection control practices of nurse anesthetists in the anesthesia workspace

American Journal of Infection Control, Volume 47, Issue 5, May 2019, Pages 551-557

Background
Anesthesia providers commonly cross-contaminate their workspace and subsequently put patients at risk for a health care–acquired infection. The primary objective of this project was to determine if education and implementation of standardized infection control guidelines that address evidence-based best practices would improve compliance with infection control procedures in the anesthesia workspace.

Methods
Patient care–related hand hygiene of nurse anesthetists was observed in 3 areas of anesthesia practice before and 3 weeks and 3 months after staff education, placement of visual reminders, and the implementation of infection control guidelines. After the observation periods, the percent compliance on the part of the providers was calculated for each of the 3 areas of anesthesia practice, and the results were compared using the Fisher exact test.

Results
There were a total of 95 observations performed during the 3 observation periods. When compared with preimplementation baseline data, there was a 26.2% increase in the number of providers compliant with hand hygiene practices after airway instrumentation (P = .029) and a 71.9% increase in the number of providers who separated clean from contaminated items in the workspace (P = .0001).

Conclusions
Education, visual reminders, and standardized infection control guidelines were shown to improve compliance with infection control best practices in a group of nurse anesthetists.

S. Pong, P. Holliday, G. Fernie

Effect of intermittent deployment of an electronic monitoring system on hand hygiene behaviors in healthcare workers

American Journal of Infection Control, Volume 47, Issue 4, April 2019, Pages 376-380

Background
Improving hand hygiene compliance among healthcare professionals is the most effective way to reduce healthcare–acquired infections. Electronic systems developed to increase hand hygiene performance show promise but might not maintain staff participation over time. In this study, we investigated an intermittent deployment strategy to overcome potentially declining participation levels.

Methods
An electronic monitoring system was deployed 3times at 6-month intervals on a musculoskeletal rehabilitation nursing unit in Toronto. Each deployment lasted 4 consecutive weeks. Each wall-mounted soap and hand rub dispenser was outfitted with an activation counter to assess the impact of system deployments on overall handwashing activity.

Results
System deployments took place in October 2016, April 2017, and October 2017. A total of 76,130 opportunities were recorded, with an aggregate hand hygiene performance of 67.43%. A total of 515,156 dispenser activations were recorded. There was a significant increase in aggregate dispenser use with every deployment and a decrease over several weeks following each withdrawal. Participation was high at the beginning of each deployment and declined during each deployment but was restored to a high level with the start of the next deployment.

Conclusions
Intermittent deployment of an electronic monitoring intervention counteracts potential declines in participation rates sometimes seen with continuous system use. However, adoption of this strategy requires the acceptance of lower periods of performance between each deployment.

M. Meng, M. Sorber, A. Herzog, C. IgelProf, C. Kugler

Technological innovations in infection control: A rapid review of the acceptance of behavior monitoring systems and their contribution to the improvement of hand hygiene

American Journal of Infection Control, Volume 47, Issue 4, April 2019, Pages 439-447

Background
Hand hygiene is crucial for preventing nosocomial infections; however, adherence rates need further attention. Prevention of nosocomial infections through regular hand hygiene monitoring and feedback is recommended by the World Health Organization. Technology holds the potential for achieving this goal. The aim of this study was to assess the influence of technological behavior monitoring innovations on hand hygiene adherence and their acceptance by healthcare professionals.

Methods
A rapid review of the literature was conducted. A literature search was performed in electronic databases (Cochrane Library, Scopus, PubMed, CINAHL, PsycINFO, PsycARTICLES, PSYNDEX) and via citation tracking in November 2017. Records were screened for eligibility. Included studies were analyzed and synthesized in a narrative, tabular way.

Results
Overall, 2,426 studies were identified, and 12 were included. Findings indicated that behavior monitoring technology improves hand hygiene adherence, resulting in adherence increases between 6.40%-54.97%. The majority of systems provided real-time feedback. Factors influencing acceptance of technology by healthcare professionals include transparency and confidentiality, user attitude and environment, device function, and device usability.

Conclusions
Recognizing the importance of hand hygiene adherence, active communication between behavior monitoring technology and healthcare workers seems to mediate improvement in sustainable hand hygiene adherence behavior.

A. Jeanes, P.  G. Coen, D. J. Gould, N. S. Drey

Validity of hand hygiene compliance measurement by observation: A systematic review

American Journal of Infection Control, Volume 47, Issue 3, March 2019, Pages 313-322

Background
Hand hygiene is monitored by direct observation to improve practice, but this approach can potentially cause information, selection, and confounding bias, threatening the validity of findings. The aim of this study was to identify and describe the potential biases in hand hygiene compliance monitoring by direct observation; develop a typology of biases and propose improvements to reduce bias; and increase the validity of compliance measurements.

Methods
This systematic review of hospital-based intervention studies used direct observation to monitor health care workers’ hand hygiene compliance.

Results
Seventy-one publications were eligible for review. None was free of bias. Selection bias was present in all studies through lack of data collection on the weekends (n = 61, 86%) and at night (n = 46, 65%) and observations undertaken in single-specialty settings (n = 35, 49%). We observed inconsistency of terminology, definitions of hand hygiene opportunity, criteria, tools, and descriptions of the data collection. Frequency of observation, duration, or both were not described or were unclear in 58 (82%) publications. Observers were trained in 56 (79%) studies. Inter-rater reliability was measured in 26 (37%) studies.

Conclusions
Published research of hand hygiene compliance measured by direct observation lacks validity. Hand hygiene should be measured using methods that produce a valid indication of performance and quality. Standardization of methodology would expedite comparison of hand hygiene compliance between clinical settings and organizations.

S. Pong, P. Holliday, G. Fernie

Secondary measures of hand hygiene performance in health care available with continuous electronic monitoring of individuals

American Journal of Infection Control, Volume 47, Issue 1, January 2019, Pages 38-44

Background
Hand hygiene (HH) compliance in health care is usually measured against versions of the World Health Organization’s “Your 5 Moments” guidelines using direct observation. Such techniques result in small samples that are influenced by the presence of an observer. This study demonstrates that continuous electronic monitoring of individuals can overcome these limitations.

Methods
An electronic real-time prompting system collected HH data on a musculoskeletal rehabilitation unit for 12 weeks between October 2016 and October 2017. Aggregate and professional group scores and the distributions of individuals’ performance within groups were analyzed. Soiled utility room exits were monitored and compared with performance at patient rooms. Duration of patient room visits and the number of consecutive missed opportunities were calculated.

Results
Overall, 76,130 patient room and 1,448 soiled utility room HH opportunities were recorded from 98 health care professionals. Aggregate unit performance for patient and soiled utility rooms were both 67%, although individual compliance varied greatly. The number of hand wash events that occurred while inside patient rooms increased with longer visits, whereas HH performance at patient room exit decreased. Eighty-three percent of missed HH opportunities occurred as part of a series of missed events, not in isolation.

Conclusions
Continuous collection of HH data that includes temporal, spatial, and personnel details provides information on actual HH practices, whereas direct observation or dispenser counts show only aggregate trends.

M. Sande-Meijide, M. Lorenzo-González, F. Mori-Gamarra, I. Cortés-Gago, A. González-Vázquez, L. Moure-Rodríguez, M. Herranz-Urbasos

Perceptions and attitudes of patients and health care workers toward patient empowerment in promoting hand hygiene

American Journal of Infection Control, Volume 47, Issue 1, January 2019, Pages 45-50

Background
Patient empowerment is a component of the World Health Organization’s multimodal strategy to improve hand hygiene (HH). Its successful implementation requires knowledge of the perceptions and attitudes of patients and health care workers (HCWs) toward patient empowerment in HH.

Methods
A cross-sectional study, through a self-administered questionnaire of patients and their families and HCWs, was conducted in a 433-bed block of an 850-bed university hospital in Galicia, Spain.

Results
A total of 337 patients and their families and 196 HCWs completed the questionnaire. Among patients and their families, 49.9% were willing to remind HCWs about HH. However, only 31.6% of HCWs (41.8% of physicians and 24.8% of nurses) supported patient participation. The most common reason for patients and their families not being willing to ask caregivers to perform HH was fear of causing annoyance or receiving worse treatment as a consequence (76%). The main reasons that physicians disagreed with patient participation was patients’ lack of knowledge (40%) and possible negative effects on the HCW/patient relationship (40%). Nurses considered this participation unnecessary (58%).

Conclusions
There were significant differences between patients and their families and HCWs regarding support for patient empowerment in promoting HH. In our setting, a cultural change is needed in the HCW/patient relationship to create a facilitating environment.

J. Ho, S. H.Wong, V. C. Doddangoudar, M. V. Boost, G. Tse, M. Ip

Regional differences in temporal incidence of Clostridium difficile infection: a systematic review and meta-analysis

American Journal of Infection Control, January 2020, Volume 48, Issue 1 Pages 89-94

Background
Previous decades have witnessed a change in the epidemiology of Clostridium difficile infections. This study aimed to determine temporal trends in the incidence of C difficile infection across geographic regions.

Methods
An initial search of the relevant literature was conducted from date inception to October 2018 without language restriction. We estimated the pooled incidences using logit transformation, weighted by inverse variance. The Joinpoint Regression Analysis Program was used to explore its temporal trend.

Results
Globally, the estimated incidence of C difficile infection increased from 6.60 per 10,000 patient-days in 1997 to 13.8 per 10,000 patient-days in 2004. Thereafter, a significant downward trend was observed, at –8.75% annually until 2015. From 2005 to 2015, the incidences in most European countries decreased at a rate between 1.97% and 4.11% per annum, except in France, where an increasing incidence was observed (β = 0.16; P < .001). The incidences have stabilized in North America over the same period; however, in Asia, the incidence increased significantly from 2006 to 2014 (annualized percentage change = 14.4%; P < .001). The increase was greatest in Western Asian countries, including Turkey and Israel (β > 0.10; P < .004).

Conclusions
This study revealed rapid changes in the incidence of C difficile infection. This meta-analysis should inform the allocation of resources for controlling C difficile infection and future surveillance efforts in countries where epidemiologic information on C difficile infection remains sparse.

D. Champredon, K.ZhangBHS, M. Smieja, S. M.Moghadas

Clostridium difficile intervention timelines for diagnosis, isolation, and treatment

American Journal of Infection Control, Volume 47, Issue 11, November 2019, Pages 1370-1374

Background
Developing timelines of nosocomial Clostridium difficile infection (CDI) is critical to improving control and preventive measures. The objective of this study was to provide data-driven estimates of CDI timelines of diagnosis, isolation, and treatment in a hospital setting.

Methods
We obtained data for all CDI inpatients with symptoms onset occurring between January 1, 2013, and December 30, 2017, from St Joseph’s Healthcare in Hamilton, Canada. We analyzed full empirical distributions of timelines associated with the diagnosis, isolation, and treatment of CDI.

Results
A total of 683 inpatients with CDI symptoms were recorded, of which 243 cases were identified as health care–associated infection (HAI). The mean time intervals between the onset of CDI symptoms after admission and the release of laboratory results were 1.2 days and 1.9 days for the HAI and community-associated infection (CAI) patient groups, respectively. The mean time intervals from symptoms onset to the start of isolation were 1.5 days and 2.6 days for the corresponding patient groups. The initiation of treatment within 2 days of symptoms onset reduced the duration of first isolation (P value < .0001); however, the type of initial antibiotic used for CDI treatment was not associated with the duration of isolation.

Conclusions
Estimated timelines did not differ (P values > .6) between HAI and CAI patient groups with symptoms onset after admission. These estimates are useful for evaluating the effectiveness of CDI interventions.

K. McLaren, E. McCauley, B. O’Neill, S. Tinker, N. Jenkins, L. Sehulster

The efficacy of a simulated tunnel washer process on removal and destruction of Clostridioides difficile spores from health care textiles

American Journal of Infection Control, Volume 47, Issue 11, November 2019, Pages 1375-138

Background
Research on reducing Clostridioides difficile spore contamination of textiles via laundering is needed. We evaluated the sporicidal properties of 5 laundry chemicals and then determined the ability of a peracetic acid (PAA) laundry cycle to inactivate and/or remove spores from cotton swatches during a simulated tunnel washer (TW) process.

Methods
In phase I, spore-inoculated swatches were immersed in alkaline detergent, sodium hypochlorite, hydrogen peroxide, or PAA for 8 minutes. In phase II, inoculated swatches were passed through a simulated 24-minute TW process employing 5 wash liquids. Spore survivors on swatches and in test chemical fluids in both studies were enumerated using standard microbiologic assay methods.

Results
In phase I, hypochlorite solutions achieved >5 log10 spore reductions on swatches and >3 log10 reductions for wash solutions. PAA achieved minimal spore reduction in the wash solution (0.26 log10). In phase II, the PAA equilibrium-containing process achieved a >5 log10 spore reduction on swatches. In wash solution tests, the cumulative spore reduction peaked at >3.08 log10 in the final module.

Conclusions
Sodium hypochlorite as a laundry additive is sporicidal. The cumulative effects of a TW process, coupled with a PAA bleach agent at neutral pH, may render textiles essentially free of C difficile spore contamination.

E.Verheyen, V. Dalapathi, S. Arora, K. Patel, P. K. Mankal. V. Kumar, E. Lung, D.P. Kotler, A. Grinspan

High 30-day readmission rates associated with Clostridium difficile infection

American Journal of Infection Control, Volume 47, Issue 8, August 2019, Pages 922-927

Background
Clostridium difficile infection (CDI) is a leading cause of community-onset and healthcare–associated infection, with high recurrence rates, and associated high morbidity and mortality. We report national rates, leading causes, and predictors of hospital readmission for CDI.

Methods
Retrospective study of data from the 2013 Nationwide Readmissions Database of patients with a primary diagnosis of CDI and re-hospitalization within 30-days. A multivariate regression model was used to identify predictors of readmission.

Results
Of 38,409 patients admitted with a primary diagnosis of CDI, 21% were readmitted within 30-days, and 27% of those patients were readmitted with a primary diagnosis of CDI. Infections accounted for 47% of all readmissions. Female sex, anemia/coagulation defects, renal failure/electrolyte abnormalities and discharge to home (versus facility) were 12%, 13%, 15%, 36%, respectively, more likely to be readmitted with CDI.

Conclusions
We found that 1-in-5 patients hospitalized with CDI were readmitted to the hospital within 30-days. Infection comprised nearly half of these readmissions, with CDI being the most common etiology. Predictors of readmission with CDI include female sex, history of renal failure/electrolyte imbalances, anemia/coagulation defects, and being discharged home. CDI is associated with a high readmission risk, with evidence of several predictive risks for readmission.

V. R.Srinivasa, R. Hariri, L. R.Frank, L. Kingsley, E. Magee, M. Pokrywka, M. H.Yassin

Hospital-associated Clostridium difficile infection and reservoirs within the hospital environment

American Journal of Infection Control, Volume 47, Issue 7, July 2019, Pages 780-785

Background
Clostridium difficile infection (CDI) is a leading cause of hospital-associated infections. Antibiotic stewardship, environmental disinfection, and reduction of transmission via health care workers are the major modes of CDI prevention within hospitals.

Methods
The aim of this study was to evaluate the role of the environment in the spread of CDI within hospital rooms. Bed tracing of positive-CDI inpatients was performed to detect the strength of association to specific rooms. Environmental cultures were conducted to identify adequacy of environmental C difficile (CD) spores. Whole-genome sequencing was performed to evaluate the degree of CD relatedness.

Results
Bed tracing performed for 211 CDI patients showed a limited list of high-burden rooms. Environmental cultures for surfaces disinfected with a sporicidal agent were almost entirely negative, whereas the floors were positive for CDI in 15% of the studied patient rooms. Whole-genome sequencing did not detect any close genetic relatedness.

Conclusions
Unlike in an outbreak setting, bed tracing did not yield conclusive results of room reservoirs. The C diff Banana Broth culture was inexpensive, sensitive, and easy to incubate under aerobic conditions. Sporicidal disinfectants were effective in eliminating CD from the environment. CD spores were found on floors and hard-to-clean surfaces.

P. Sampathkumar, C. Folkert, J. E.Barth, L. Nation, M. Benz, A. Hesse, C. L.Mielke, K. W. Zaveleta

A trial of pulsed xenon ultraviolet disinfection to reduce Clostridioides difficile infection

American Journal of Infection Control, Volume 47, Issue 4, April 2019, Pages 406-408

Background
An intervention was designed to test whether the addition of an ultraviolet (UV) disinfection step after terminal cleaning would be helpful in reducing Clostridium difficile infection (CDI) rates in a real-world situation.

Methods
This study was a quasi-experimental design using 3 units as intervention units for the intervention and 3 similar units as control units. Intervention units 2 hematology and bone marrow transplant units and one medical-surgical unit at a large teaching hospital in the Midwest. UV disinfection was added after patient discharge and terminal cleaning in the intervention units.

Results
At baseline, CDI rates in the intervention and control arms were similar. During the 6 months of UV disinfection, the CDI rate in the intervention units decreased to 11.2 per 10,000 patient days, compared with 28.7 per 10,000 patient days in the control units (P = .03). In addition, the intervention units also saw a reduction in vancomycin-resistant enterococci acquisition.

Conclusions
The addition of UV disinfection to the terminal cleaning resulted in a reduction in CDI that has been sustained over several months 2 years.

C. S.Tilton, S. W. Johnson, 

Development of a risk prediction model for hospital-onset Clostridium difficile infection in patients receiving systemic antibiotics

American Journal of Infection Control, Volume 47, Issue 3, March 2019, Pages 280-284

Background
Clostridium difficile infection (CDI) is recognized as a significant challenge in health care. Identification of high-risk individuals is essential for the development of CDI prevention strategies. The objective of this study was to develop an easily implementable risk prediction model for hospital-onset CDI in patients receiving systemic antimicrobials.

Methods
This retrospective, case-control, multicenter study included adult patients admitted to Novant Health Forsyth Medical Center and Novant Health Presbyterian Medical Center from July 1, 2015, to July 1, 2017, who received systemic antibiotics. Cases were subjects with hospital-onset CDI; controls were subjects without a CDI diagnosis. Cases were matched 1:1 with controls by admitted medical unit type. Variables significantly associated with CDI were incorporated into a multivariate analysis. A logistic regression model was used to formulate a point-based risk prediction model. Positive predictive value, negative predictive value, sensitivity, specificity, and accuracy were determined at various point cutoffs of the model. A receiver operating characteristic–area under the curve was created to assess the discrimination of the model.

Results
A total of 200 subjects (100 cases and 100 controls) were included. Most patients were Caucasian and female. Risk factors for CDI identified and incorporated into the model included age ≥70 years (adjusted odds ratio, 1.89; 95% confidence interval 1.05-3.43; P = .0326) and recent hospitalization in the past 90 days (adjusted odds ratio, 3.55; 95% confidence interval 1.90-6.83; P < .0001). Sensitivity and specificity were 76% and 49%, respectively, for scores ≥2 and 20% and 93%, respectively, for a score of 6. Diagnostic performance of various score cutoffs for the model indicated that a score ≥2 was associated with the highest accuracy (63%). The receiver operating characteristic–area under the curve was 0.7.

Discussion
We developed a simple-to-implement hospital-onset CDI risk model that included only independent risks that can be obtained immediately on presentation to the health care facility. Despite this, the model had fair discriminatory power. Similar risk factors were found in previously developed models; however, the utility of these models is limited owing to the difficulty of assessing other included risk factors and the inclusion of risk factors that cannot be evaluated until the patient is discharged from the health care facility.

Conclusions
Identification of hospitalized patients who are receiving systemic antibiotics, are ≥70 years old, and were recently admitted to the hospital in the past 90 days may allow for an easily implementable hospital-onset CDI risk prevention strategy.

K. A. Carter, A. N. Malani

Laxative use and testing for Clostridium difficile in hospitalized adults: An opportunity to improve diagnostic stewardship

American Journal of Infection Control, Volume 47, Issue 2, February 2019, Pages 170-174

Background
It is recommended that that only unformed stool from patients with diarrhea be tested for Clostridium difficile infection. We determined the prevalence of and patient characteristics associated with antecedent laxative receipt among hospitalized adults undergoing C difficile testing.

Methods
In a case-control study of 5,452 C difficile tests from 5 hospitals in Southeast Michigan, patients who received laxatives (docusate, senna, polyethylene glycol 3350, bisacodyl, and magnesium hydroxide) in the 24 or 48 hours before testing were identified. Logistic regression was performed to identify patient characteristics associated with laxative receipt before testing.

Results
In 535 (9.8%) and 707 (13%) tests, patients received laxatives in the 24 and 48 hours before testing, respectively. The odds of antecedent laxative receipt were significantly greater for patients residing on a surgical service than a medical service (24 hours odds ratio [OR], 2.5; 95% confidence interval [CI], 2.1–3.1; 48 hours OR, 2.7; 95% CI, 2.3–3.2), patients residing in an intensive care unit (ICU) than a non-ICU (24 hours OR, 1.3; 95% CI, 1.0–1.6; 48 hours OR, 1.3; 95% CI, 1.1–1.6), and patients whose Elixhauser Comorbidity Score was 4 or higher (24 hours OR, 1.4; 95% CI, 1.1–1.7; 48 hours OR, 1.4; 95% CI, 1.2–1.7).

Conclusions
Among patients tested for C difficile, antecedent laxative use was common. Improving diagnostic stewardship around C difficile testing, particularly in surgical and ICU patients, is a significant opportunity and priority for quality improvement.

M. L. Carvour, S. L. Wilder, K. L.Ryan, C.  Walraven, F. Qeadan, M. Brett, K. Page

Predictors of Clostridium difficile infection and predictive impact of probiotic use in a diverse hospital-wide cohort

American Journal of Infection Control, Volume 47, Issue 1, January 2019, Pages 2-8

Background
Hospital-based predictive models for Clostridium difficile infection (CDI) may aid with surveillance efforts.

Methods
A retrospective cohort of adult hospitalized patients who were tested for CDI between May 1, 2011, and August 31, 2016, was formed. Proposed clinical and sociodemographic predictors of CDI were evaluated using multivariable predictive logistic regression modeling.

Results
In a cohort of 5,209 patients, including 1,092 CDI cases, emergency department location (adjusted odds ratio [aOR], 1.91; 95% confidence interval [CI], 1.51, 2.41; compared with an intensive care unit reference category, which had the lowest observed odds in the study) and prior exposure to a statin (aOR, 1.26, 95% CI, 1.06, 1.51), probiotic (aOR, 1.39; 95% CI, 1.08, 1.80), or high-risk antibiotic (aOR, 1.54; 95% CI, 1.29, 1.84), such as a cephalosporin, a quinolone, or clindamycin, were independent predictors of CDI. Probiotic use did not appear to attenuate the odds of CDI in patients exposed to high-risk antibiotics, but moderate-risk antibiotics appeared to significantly attenuate the odds of CDI in patients who received probiotics.

Conclusions
Emergency department location, high-risk antibiotics, probiotics, and statins were independently predictive of CDI. Further exploration of the relationship between probiotics and CDI, especially in diverse patient populations, is warranted.

G. DiDiodato, L. Fruchter

Antibiotic exposure and risk of community-associated Clostridium difficile infection: A self-controlled case series analysis

American Journal of Infection Control, Volume 47, Issue 1, January 2019, Pages 9-12

Background
Community-associated Clostridium difficile infection is inconsistently associated with antibiotic exposure. This study uses a self-controlled case series (SCCS) design to estimate antibiotic exposure effect sizes and compare them with those estimated from previous case-control studies.

Methods
Clostridium difficile infection among 139,000 patients registered to the Barrie Family Health Team from January 1, 2011, to May 1, 2017, using an SCCS design. Poisson regression analysis was used to estimate the incidence rate ratio (IRR) between antibiotic exposure versus nonexposure periods within individuals. Antibiotic exposure was categorized as either high risk (fluoroquinolone, clindamycin, or cephalosporin) or low risk (all other antibiotic classes).

Results
The final analysis included 189 cases. The pooled IRR for high-risk antibiotics was 2.26 (95% confidence interval [CI] 1.29, 3.98) and 2.03 (95% CI 1.19, 3.47) for lower-risk antibiotics. There was no difference between high-risk and lower-risk antibiotics (IRR 1.11, 95% CI 0.53, 2.36).

Interpretation
The IRRs were smaller than the odds ratios reported in previous case-control studies, suggesting a less biased estimate because SCCS designs control for time-invariant confounders. Compared with case-control studies, SCCS designs are underused in infection prevention and control studies.

Leitner E, Schreiner E, Neuhold M, Bozic M, Pux C, Pichler G, Schippinger W, Steinmetz I, Krause R, Zollner-Schwetz I.

Low prevalence of Clostridium difficile colonization in patients in long-term care facilities in Graz, Austria: A point-prevalence study.

Am J Infect Control. 2020 Jan 6. 

Background
We aimed to determine the prevalence of asymptomatic colonization by C. difficile in stool of residents in four long-term care facilities (LTCFs) in Graz, Austria and to identify factors associated with colonization.

Methods
We conducted a point-prevalence study in March 2018. Stool samples were examined by GDH enzyme immunoassay and when positive a toxin A/B-enzyme immunoassay was carried out. Additionally, all samples were tested by toxin A and B PCR and were plated manually as well as in automated fashion onto selective C. difficile agar.

Results 
In 4/144 (2.8%) residents the GDH assay was positive. Each resident was colonized by a different C. difficile ribotype. C. difficile was not detected in any of the environmental samples. Significantly more colonized residents (60%) had stayed at a hospital in the 3 months previous to the study compared to 10% of non-colonized patients (p=0.01).

Conclusions 
The prevalence of colonization by toxigenic C. difficile was 2.8% in patients in LTCFs in Graz, Austria.

Copyright © 2019 Association for Professionals in Infection Control and Epidemiology, Inc. Published by Elsevier Inc. All rights reserved.

Marra AR, Perencevich EN, Nelson RE, Samore M, Khader K, Chiang HY, Chorazy ML, Herwaldt LA1, Diekema DJ, Kuxhausen MF, Blevins A, Ward MA, McDanel JS, Nair R, Balkenende E, Schweizer ML.

Incidence and Outcomes Associated With Clostridium difficile Infections: A Systematic Review and Meta-analysis.

JAMA Netw Open. 2020 Jan 3;3(1)

Importance
An understanding of the incidence and outcomes of Clostridium difficile infection (CDI) in the United States can inform investments in prevention and treatment interventions.

Objective 
To quantify the incidence of CDI and its associated hospital length of stay (LOS) in the United States using a systematic literature review and meta-analysis.

Data Sources 
MEDLINE via Ovid, Cochrane Library Databases via Wiley, Cumulative Index of Nursing and Allied Health Complete via EBSCO Information Services, Scopus, and Web of Science were searched for studies published in the United States between 2000 and 2019 that evaluated CDI and its associated LOS.

Study Selection
Incidence data were collected only from multicenter studies that had at least 5 sites. The LOS studies were included only if they assessed postinfection LOS or used methods accounting for time to infection using a multistate model or compared propensity score-matched patients with CDI with control patients without CDI. Long-term-care facility studies were excluded. Of the 119 full-text articles, 86 studies (72.3%) met the selection criteria.

Data Extraction and Synthesis 
Two independent reviewers performed the data abstraction and quality assessment. Incidence data were pooled only when the denominators used the same units (eg, patient-days). These data were pooled by summing the number of hospital-onset CDI incident cases and the denominators across studies. Random-effects models were used to obtain pooled mean differences. Heterogeneity was assessed using the I2 value. Data analysis was performed in February 2019.

Main Outcomes and Measures 
Incidence of CDI and CDI-associated hospital LOS in the United States.

Results 
When the 13 studies that evaluated incidence data in patient-days due to hospital-onset CDI were pooled, the CDI incidence rate was 8.3 cases per 10 000 patient-days. Among propensity score-matched studies (16 of 20 studies), the CDI-associated mean difference in LOS (in days) between patients with and without CDI varied from 3.0 days (95% CI, 1.44-4.63 days) to 21.6 days (95% CI, 19.29-23.90 days).

Conclusions and Relevance
Pooled estimates from currently available literature suggest that CDI is associated with a large burden on the health care system. However, these estimates should be interpreted with caution because higher-quality studies should be completed to guide future evaluations of CDI prevention and treatment interventions.

Kachrimanidou M, Tzika E, Filioussis G.

Clostridioides (Clostridium) Difficile in Food-Producing Animals, Horses and Household Pets: A Comprehensive Review.

Microorganisms. 2019 Dec 9;7(12). 

Abstract
Clostridioides (Clostridium) difficile is ubiquitous in the environment and is also considered as a bacterium of great importance in diarrhea-associated disease for humans and different animal species. Food animals and household pets are frequently found positive for toxigenic C. difficile without exposing clinical signs of infection. Humans and animals share common C. difficile ribotypes (RTs) suggesting potential zoonotic transmission. However, the role of animals for the development of human infection due to C. difficile remains unclear. One major public health issue is the existence of asymptomatic animals that carry and shed the bacterium to the environment, and infect individuals or populations, directly or through the food chain. C. difficile ribotype 078 is frequently isolated from food animals and household pets as well as from their environment. Nevertheless, direct evidence for the transmission of this particular ribotype from animals to humans has never been established. This review will summarize the current available data on epidemiology, clinical presentations, risk factors and laboratory diagnosis of C. difficile infection in food animals and household pets, outline potential prevention and control strategies, and also describe the current evidence towards a zoonotic potential of C. difficile infection.

Goltsman G, Gal G, Mizrahi EH, Mardanov S, Pinco E, Lubart E.

The impact of intensive staff education on rate of Clostridium difficile-associated disease in hospitalized geriatric patients.

Aging Clin Exp Res. 2019 Nov 27. 

Background
Toxin-producing Clostridium difficile is the most common cause of nosocomial diarrhea in geriatric units.

Aim
The purpose of study was to check the impact of intensive staff education on rate of Clostridium difficile-associated disease in hospitalized geriatric patients.

Methods
The sampling frame was all patients suffering from diarrhea checked for Clostridium difficile toxin during the years 2017-2018. Clostridium difficile-positive patients were compared to a similar number of Clostridium difficile toxin-negative patients. The data were compared to our previous study, followed by medical staff’s educational program for Clostridium difficile control and prevention.

Results
Among 217 patients with diarrhea, 60 (27.6%) were positive for Clostridium difficile toxin. The study group tended to be of older age (p = 0.06), and showed higher rate of functional impairment (p < 0.001) and mortality (p < 0.001) than Clostridium difficile toxin negative patients. The rate of Clostridium difficile toxin-positive patients did not significantly differ between the previous and current studies (20.0% and 27.6%, respectively).

Conclusions and discussion
In spite of findings, that patients tended to be older, with high rate of mortality, the rate of Clostridium difficile did not change from the previous study.

Haigh J, Cutino-Moguel MT, Wilks M, Welch CA, Melzer M.

A service evaluation of simultaneous near-patient testing for influenza, respiratory syncytial virus, Clostridium difficile and norovirus in a UK district general hospital.

J Hosp Infect. 2019 Dec;103(4):441-446. 

Background
The Cepheid® GeneXpert® (GXP) can simultaneously test for norovirus (NV), Clostridium difficile (CD), influenza A/B (IFA/B) and respiratory syncytial virus (RSV).

Aim
To compare centralized multiplex polymerase chain reaction (PCR) testing with localized GXP testing at a district general hospital.

Methods
From December 2017 to December 2018, samples received at Whipps Cross University Hospital (WCUH) were first tested at the local laboratory before transport centrally to the Royal London Hospital (RLH). At the RLH, a non-proprietary multiplex reverse transcriptase (RT) PCR assay was performed, which also tested for gastrointestinal or respiratory pathogens not tested for by the GXP.

Findings
A total of 1111 stool and respiratory samples were processed at both sites; 591 were respiratory and 520 were stool samples. Compared to centralized testing, the GXP gave sensitivity, specificity, and NPV all in excess of 97%, with the exception of RSV. The RSV assay had a sensitivity of 66.7% (95% confidence interval (CI) 24.1, 94.0) but an NPV of 99.7% (95% CI 98.6, 99.9). At the RLH, 65 (5.9%) additional respiratory or gastrointestinal viruses were detected, predominantly rhinovirus 35 (3.2%) and adenovirus 11 (1.0%). Compared to centralized testing, the median time saved for local respiratory and gastrointestinal sample testing was 19 h and 46 min and 17 h and 6 min, respectively.

Conclusions
Local GXP testing compared to centralized multiplex PCR testing for IF, NV and CD, demonstrated sensitivities, specificities and NPV between 95% and 100%. Turnaround times were faster, enabling quicker infection prevention and control decision making. In our local setting (WCUH), the GXP demonstrated the potential to reduce NV and IFA/B outbreaks.

Grainger RJ, Stevens NT, Humphreys H.

Approaches to the detection of Clostridioides difficile in the healthcare environment.J

Hosp Infect. 2019 Dec;103(4):375-381. 

Abstract
Clostridioides difficile, a spore-forming bacillus, is a major cause of healthcare-associated infection, and can survive for prolonged periods in the inanimate environment. Environmental sampling to detect C. difficile is not routine but may be undertaken as part of outbreak management and during research projects. We conducted a literature search covering the period between 1980 and 2018 to review methods for the detection of this pathogen in the environment. There are many acceptable sampling methods used for environmental screening, including contact plates, cotton swabs, flocked swabs and sponges. Most recent studies suggest that sponges are the most effective method of sampling and have the added benefit of being capable of sampling larger and curved areas. Culture methods are the most common laboratory method of detecting C. difficile from environmental samples. However, the results are variable depending on the type of agar used and the turnaround times can be long. Molecular methods such as real-time polymerase chain reaction (RT-PCR), although more commonly used to detect C. difficile from faecal specimens, has been used with varying degrees of success in environmental sampling. Further studies are needed to determine whether molecular techniques could offer a more reliable, faster method of environmental sampling, giving infection prevention and control teams more reassurance that patients are being placed in adequately decontaminated hospital environments.

A propos des masques: lesquels, quand et comment?


I. Masques chirurgicaux (« masques médicaux »)

1. Introduction

Les masques chirurgicaux (également appelés « masques médicaux » ou « masques de soins») sont des dispositifs médicaux qui couvrent la bouche et le nez et forment ainsi une barrière limitant le transfert d’agents infectieux entre les prestataires de soins de santé (PSS) et le patient. La réglementation européenne considère ces masques comme des dispositifs médicaux (« medical devices ») de classe I, et ils doivent se conformer au Règlement européen 93/42/CEE. Ce Règlement stipule que les dispositifs médicaux et accessoires ne peuvent être autorisés et mis sur le marché européen que s’ils portent le marquage CE. Le fabricant doit pour ce faire procéder à une évaluation de leur conformité. A partir du 26 mai 2020, la Directive 93/42/CEE sera abrogée et remplacée par le Règlement (UE) 2017/745.

Ces masques peuvent avoir différentes applications :

  • Prévention de la contamination per-opératoire du patient vis-à-vis des micro-organismes provenant des PSS et émis lors de la toux, d’éternuements, de la parole (types II et IIR) ;
  • Protection des PSS vis-à-vis des éclaboussures de sang et d’autres liquides biologiques (types IR et IIR) ;
  • Limitation des risques de transmission de micro-organismes pathogènes (par ex. virus influenza) par des patients et/ou visiteurs (types I et II). 

La norme européenne EN 14683:2014 précise les exigences auxquelles les masques chirurgicaux doivent répondre et facilite le choix par l’utilisateur d’un masque adapté à ses besoins. Conformément à cette norme, le fabriquant/fournisseur présente les caractéristiques de qualité de manière normalisée à l’utilisateur (1).

2. EN 14683:2014

Les exigences de performance minimale de la norme européenne EN 14683:2014 concernent :

  1. L’efficacité in vitro de filtration bactérienne (l’efficacité de filtration bactérienne exprimée en pourcentage (%) est mesurée sur le matériau du masque et elle ne prend pas en compte les fuites au visage): plus l’EFB est élevée, plus le degré de protection du patient contre les micro-organismes provenant de l’équipe chirurgicale est efficace. Les particules utilisées dans ce test ont une taille moyenne de 3 microns. Une efficacité filtrante ≥95% donne lieu à une classification de type I, une efficacité filtrante ≥98% à une classification de type II. Il est conseillé d’utiliser un masque à haute capacité filtrante pour les interventions chirurgicales de longue durée.
  2. La résistance respiratoire (Delta P): exprime la résistance du masque à la respiration. A niveau de fuite à la périphérie identique, un masque permettra un meilleur confort d’utilisation au porteur (respiration plus aisée, fraicheur accrue) lorsque la résistance respiratoire est basse. Une résistance plus faible entraîne une pression moindre sur le masque, qui conservera mieux sa forme. Par ailleurs, une moindre quantité d’air non filtré s’échappera des contours du masque. La résistance respiratoire s’exprime en mm H2O/cm2 ou en Pascal (Pa)/cm². Les masques non résistants aux éclaboussures (type I et II) présentent une résistance à la respiration < 3,0 mmH2O/cm2 (< 29,4 Pa/cm2) tandis que celle-ci doit être < 5,0 mmH2O/cm2 (< 49,0 Pa/cm2) pour les masques résistants aux éclaboussures (de type IR et IIR). 
  3. La résistance aux éclaboussures : les masques doivent être conformes au test de résistance aux éclaboussures selon la norme EN ISO 22609 ; plus la résistance aux éclaboussures est élevée, plus l’utilisateur sera protégé des éclaboussures potentiellement contaminantes qui peuvent se produire lors d’interventions chirurgicales. La résistance s’exprime en mm Hg ou en kPa. La résistance doit être d’au moins 120 mm Hg (ou 16,0 kPa), ce qui correspond à la pression artérielle systolique moyenne. L’objectif est de protéger l’utilisateur de petites projections de sang qui se produisent lors de l’éclatement de petits vaisseaux.
  4. Pureté microbiologique : les masques doivent être testés conformément à la norme EN ISO 11737-1, pour confirmer que la présence de la charge microbienne (« bioburden ») composés de micro-organismes viables est ≤ à 30 cfu/g.

Confort cutané. Le test de résistance respiratoire reflète également un élément important de confort cutané. Cet aspect n’était pas repris dans la norme précédente de 2004.  Compte tenu du contact direct du masque avec une zone sensible de la peau, il est important que celui-ci ne provoque pas d’irritation cutanée. La norme de 2004 stipule que le fabricant doit procéder à une évaluation des masques selon la norme EN ISO 10993-1 (évaluation biologique) Ce test apporte des élements d’information quant aux effets biologiques des masques sur la peau, tels que cytotoxicité, hypersensibilité et irritation cutanée. Les résultats de ce test doivent être documentés et disponibles sur demande des utilisateurs.

Synthèse des exigences de performance

Tableau 1 : exigences de performance selon la norme EN 14683:2014

3. Tests non pris en compte dans la norme EN14683:2014 (1,2)

  1. Capacité de filtration de particules. Des particules de très petite taille (inférieure à 0,1 micron) peuvent être émises notamment lors d’interventions chirurgicales au laser (fumée due au laser/fumée diathermique). Des masques respiratoires de protection personnelle (EN 149:2001) adaptés peuvent constituer une barrière vis-à-vis des micro-organismes présents dans la fumée chirurgicale. Au Pays-Bas, le ‘Werkgroep Infectiepreventie’ (WIP) recommande le port d’un masque respiratoire de type FFP2 (voir plus loin) en l’absence d’aspiration à la source de la fumée de laser. Néanmoins, certains composés aromatiques volatils benzéniques, plusieurs particules d’ADN d’origine virale, telles celles des  virus HPV (0,045 micron), HBV (0,042 micron) et VIH (0,10 micron) pénétreront facilement au travers de ces masques. Des particules intactes d’ADN et les virus correspondants ont en effet également été retrouvées dans la fumée chirurgicale. (3,4). En 1997, le WIP a émis la recommandation que les masques respiratoires à haute pression offraient la meilleure protection contre la fumée chirurgicale (5).
  2. Capacité de filtration en fonction du temps. Aucun élément ne semble actuellement indiquer une baisse de la capacité de filtration des masques lorsqu’ils sont portés pendant une longue période. Une étude (6) a cependant démontré que lors du port d’un masque (masque jetable double couche de 200 g/m2), le nombre de micro-organismes émis augmentait en fonction du temps; après le port du masque pendant environ 2,5 heures, la charge microbienne à l’extérieur du masque était aussi élevée que celle mesurée en l’absence  du port de masque. Cette étude ne précisait cependant pas clairement les qualités techniques du masque testé, telles sa capacité de filtration, la présence de cordons ou d’élastiques d’oreille, etc.
    Selon un fabricant (7) et des recommandations françaises (8), un masque chirurgical offre une protection pendant 3 heures maximum mais doit être remplacé plus tôt lorsqu’il est souillé ou humide.
  3. Efficacité de la filtration bactérienne in vivo. Vu la très grande variabilité individuelle dans la façon de porter un masque, il faudrait idéalement évaluer un très large éventail de sujets, ce qui rend ce type de test très coûteux. A noter qu’un élément déterminant pour l’efficacité d’un masque est qu’il recouvre bien le nez et la bouche. Ainsi, un masque maintenu en place par des élastiques autour des oreilles sera moins efficace qu’un masque à cordons.
  4. Capacité d’absorption de l’humidité dans l’air expiré : pour des interventions de longue durée, il est particulièrement important de disposer de masques qui maintiennent leurs performances pendant une plus longue période.

4. Quel type de masque chirurgical utiliser dans quelles circonstances ?


a) Indications
Les indications suivantes ne sont pas limitatives et sont reprises uniquement à titre exemplatif. Pour garantir la standardisation, il peut être licite de décider de ne prévoir dans l’établissement qu’un seul type de masque pour l’ensemble des indications (par ex. le type IIR).

Tableau 2 : Exemples d’indication

 

*Le port d’un masque chirurgical vise d’une part pendant l’intervention, à éviter l’émission de particules et l’introduction de la flore microbienne oro-pharyngée des opérateurs dans la plaie ouverte du patient et d’autre part de protéger l’équipe opératoire des éclaboussures de sang et de fluides corporels.

Bien que l’utilité du port du masque pour la prévention d’infections des plaies postopératoires (IPPO) reste controversée (9), le WIP estime que les données de la littérature ne permettent pas de conclure à contrario que le port du masque en prévention d’une infection des plaies constitue une pratique insensée 10).

Le Conseil Supérieur de la Santé (11) recommande également le port du masque chirurgical dans la zone d’activité critique du quartier opératoire, et ce, tant par l’équipe opératoire que par le personnel circulant. La zone critique en activité est décrite comme suit :

– les instruments sont préparés et disposés sur les tables ;
– un des opérateurs a terminé sa préparation de façon stérile ;
– le champ opératoire est préparé.

b) Visiteurs et patients

Il est recommandé que les visiteurs et patients souffrant de fortes quintes de toux portent un masque chirurgical. A cet égard, Il est important de mettre en place des affiches explicites aux différentes entrées de l’hôpital afin d’informer les patients que des masques peuvent être mis à disposition par le biais de « stations de toux », où des mouchoirs en papier et du gel hydroalcoolique sont également disponibles (Figure 1).
Lorsqu’il s’agit de maladies transmissibles par voie aérienne comme la tuberculose, le port d’un masque chirurgical peut suffire (voir plus loin, sous les masques respiratoires).

Figure 1: Exemple d’une « Station de toux » à l’UZA

 

c) Examen d’imagerie par résonance magnétique (IRM)

Les patients qui,en cas de maladie infectieuse potentiellement contagieuse, doivent porter un masque pendant un examen d’IRM, doivent s’en voir proposer un exempt de métal. Du métal est notamment présent au niveau de l’arceau nasal ou des cordons de fixation du masque.

5. Comment porter un masque chirurgical ?

Un masque chirurgical n’offre une protection optimale que lorsqu’il est correctement porté. Le masque doit dès lors bien épouser les contours de la peau et rester bien en place. Un masque qui bouge accroît l’exfoliation de la peau et la contamination bactérienne de surfaces directement sous le visage. McLure et al. (2000) (12) ont étudié l’effet des mouvements du masque auprès de 10 hommes barbus, 10 hommes rasés de près ainsi que chez 10 femmes. Le va-et-vient du masque a augmenté la charge bactérienne sur une gélose de culture posée 15 cm sous les lèvres tant chez les sujets barbus (p = 0,03) que chez les femmes (p = 0,03) mais pas chez les hommes rasés de près. Au repos, même avec masque bien fixé, les sujets barbus véhiculaient nettement plus de bactéries que les hommes rasés de près (p = 0,01) ou les femmes (p = 0,001). Globalement, ces données étayent bien l’importance de la bonne fixation du masque (sans va et vien) chez tout le monde pour réduire le risque de contamination du champ stérile. On peut utiliser l’ étude de McLure et al pour conseiller (et essayer de convaincre) que les chirurgiens barbus devraient raser leur barbe 

Les masques à cordons sont dès lors à privilégier : les cordons supérieurs doivent être fixés à l’arrière de la tête et les cordons inférieurs à l’arrière, au niveau de la nuque. Le masque doit toujours être suffisamment déployé afin de réduire au minimum le nombre de couches à travers lesquelles la respiration doit se faire. Pour une occlusion optimale, l’arceau nasal doit être bien enfoncé (Figure 2).

Comme déjà signalé plus haut dans le texte, il est recommandé de porter un masque chirurgical au maximum pendant 3 heures, et, de le remplacer plus tôt lorsque celui-ci est souillé ou humide.

Figure 2 (13): masque chirurgical

Pour éviter la contamination des mains, le masque ne peut être touché pendant qu’il est porté. Lors du retrait, le masque doit être éliminé avec les déchets médicaux sans risque. En aucun cas, le masque ne peut être conservé dans le sac des vêtements de travail en vue d’un usage ultérieur.
Une désinfection des mains doit être effectuée de manière systématique après le retrait du masque compte tenu de la contamination de celui-ci par la flore microbienne oro-pharyngée du porteur.

6. Les masques en tant que dispositifs médicaux et équipements de protection individuelle (EPI)

Dans certaines situations bien spécifiques, il peut s’avérer nécessaire de recommander le port d’un masque permettant d’assurer une protection adéquate des prestataires de soins vis-à-vis de maladies transmissibles par voie aérienne en plus de leur fonction habituelle de prévention de la contamination de la plaie opératoire à partir des particules respiratoires émises par les opérateurs pendant l’intervention (cf. supra). Pareille situation peut survenir par exemple lors d’interventions chirurgicales chez un patient avec tuberculose pulmonaire active ou laryngée (suspectée ou confirmée). Ces masques doivent se conformer aux exigences d’un masque chirurgical de type IIR (EN 14683) et aux exigences de la norme EN149 pour les masques respiratoires (masques FFP) (voir plus loin). Si l’on opte pour un masque avec valve respiratoire, il existe des masques dont les propriétés du revêtement apposé sur la valve répondent aux exigences d’un masque chirurgical de type IIR.

L’adaptation du Règlement européen concernant les dispositifs médicaux (« Medical Device Directive ») permet la mise en vente sur le marché européen des dispositifs médicaux qui protègent le porteur du masque mais aussi revendiquent des qualités en vertu du Règlement relatif aux équipements de protection individuelle, ce qui n’était pas possible auparavant.

7. Impact d’un masque chirurgical sur le patient

Une étude randomisée et contrôlée menée auprès de 1030 patients, a mis en évidence que le port d’un masque par les médecins pendant les consultations avait un impact négatif sur les patients ceux-ci percevant nettement moins l’empathie du médecin à leur égard. Un tel élément pourrait altérer la relation de confiance médecin-patient et  entraîner des conséquences dommageables au niveau thérapeutique. Les auteurs concluaient que tant les avantages que les inconvénients du port d’un masque devraient être pris en considération dans le cadre de recommandations . Ka Man Wong et al. (14).

II. Masques respiratoires 

1. Introduction

Les masques respiratoires sont considérés comme des EPI et devaient, conformément au Règlement européen 89/686/CEE, arborer une étiquette CE comportant un numéro d’enregistrement d’un « organisme notifié », un code à quatre chiffres de l’instance de contrôle. Le Règlement 89/686/CEE a été remplacé par le nouveau Règlement EPI 2016/425 qui est entré en vigueur le 21 avril 2018. Les normes européennes EN149:2001 et A1:2009 précisent les exigences auxquelles ces masques respiratoires doivent répondre. 

Pour être conformes aux normes EN149:2001 et A1:2009, les masques doivent assurer une bonne protection vis-à-vis de la poussière, de la fumée ainsi que les aérosols « solides » (S) et « liquides » (L).
Sur la base des résultats de test de la norme européenne EN149, un masque respiratoire jetable (ne nécessitant pas d’entretien) est catégorisé dans l’une des trois classes : FFP1, FFP2 et FFP3. La classe « P» correspond au niveau de performance des filtres ; les lettres « FFP» font référence à la dénomination « filtering face piece ». Les classes les plus élevées correspondent aux meilleurs niveaux d’efficacité.
Le test européen utilise une solution de NaCl en phase aqueuse à un débit de 95 l/min (avec détermination d’un gradient de pression) et des particules d’un diamètre moyen de 0,6 micromètre. On effectue aussi un test pour les particules liquides au moyen d’un aérosol à base d’huile de paraffine. En outre, on effectue des tests in vivo (sur personnes réelles), qui déterminent le niveau total de fuite vers l’intérieur. Ce dernier élément permet d’évaluer la bonne occlusion au niveau du visage.

Tableau 3 : exigences de performance selon EN 149:2001+A1:2009

Les masques peuvent également être équipés ou non d’une valve respiratoire. Cette valve respiratoire augmente le confort du porteur, surtout en cas de port de longue durée (> 30 minutes). En effet, plus l’efficacité de filtration sera élevée, plus la résistance respiratoire le sera également. Cette valve évite en outre l’effet de surchauffe.

Les masques respiratoires jetables peuvent être portés pendant plusieurs heures (par ex. pendant un service complet).
Les masques à poussière portant le code D (exemple : FFP3D) peuvent être portés pour une durée supérieure à un service, pour autant que l’on suive les instructions d’emploi.

2. Types de masques respiratoires

Plusieurs types de masques respiratoires sont disponibles sur le marché. Dans le groupe des masques ajustés, on retrouve les masques jetables, les demi-masques et les masques complets réutilisables avec filtres. Citons également les systèmes respiratoires motorisés qui protègent l’ensemble du visage et dans lesquels l’air ambiant est injecté dans le masque ou dans la cagoule de protection (figure 4). Le facteur de protection de ces masques réutilisables, combiné aux filtres est très variable et d’autres normes européennes les régissent (comme les normes EN 143 et EN 12941). Conformément à la norme EN 143, les filtres sont répartis en trois classes de filtration, P1, P2 et P3 représentant une pénétration de filtration de respectivement 20 %, 6 % et 0,05 %. 

Les masques non réutilisables arborent la mention « NR » (« non-reusable ») et peuvent être utilisés pendant maximum un service. Les masques réutilisables peuvent être portés pendant plusieurs services et doivent se soumettre à des tests supplémentaires pour pouvoir arborer la mention « R » (« reusable »).

Figure 3 : types de masques et systèmes respiratoires (13)


3. Indications des masques respiratoires

Outre l’application de ces masques lors de soins à des patients souffrant de maladies pouvant se propager par voie aérienne et/ou de maladies infectieuses hautement contagieuses, le port de masques respiratoires est également préconisé durant l’utilisation confinée en laboratoire d’organismes génétiquement modifiés et/ou hautement contagieux (13).

a) Masque respiratoire jetable
Dans le cadre des soins de santé, ce sont les masques de type jetable qui sont le plus souvent utilisés. Le port d’un masque respiratoire à haute efficacité filtrante est préconisé pour assurer la protection personnelle vis-à-vis de maladies infectieuses ayant une transmission par voie aérienne (« airborne ») comme la tuberculose, la rougeole, la varicelle. La propagation par voie aérienne se fait par des petites particules de poussière de moins de 5 micromètres (également appelées gouttelettes desséchées ou « droplet nuclei ») qui contiennent des micro-organismes et peuvent rester en suspension dans l’air pendant une période prolongée. Les micro-organismes peuvent dès lors se propager sur une grande distance et être inhalés par des personnes qui se trouvent dans un même espace (p.ex. la chambre du patient, l’unité/service). C’est la raison pour laquelle des conditions spéciales de traitement de l’air et de ventilation (chambres en dépression) sont nécessaires pour prévenir la transmission par voie aérienne. L’accès à une pièce affichant une concentration élevée de ces gouttelettes peut entraîner une contamination en l’absence du port de masque adapté. Les masques respiratoires doivent pouvoir filtrer ces gouttelettes.

Pratiquement, cela signifie que, dans le cas de chambres d’isolement hébergeant des patients atteints des affections précitées, le port du masque est indiqué avant d’entrer dans la pièce et il ne faut l’enlever qu’après avoir quitté la pièce. Cette mesure de précaution s’applique également lorsque le patient ne se trouve pas dans sa chambre.

Un masque de classe FFP2 minimum est recommandé pour les soins aux patients tuberculeux. Le masque FFP3 est à privilégier pour les patients qui souffrent de tuberculose à germes multirésistants (16).

b) Systèmes motorisés (« Powered Air Purifying Respirator » (PAPRs))

Ces dispositifs (avec casque ou cagoule) ne sont préconisés que pour les cas de maladies infectieuses hautement contagieuses tels le syndrome respiratoire du Moyen-Orient (MERS) à MERS-coronavirus et les fièvres hémorragiques (17). De tels systèmes sont utilisés notamment dans l’unité de haut isolement (High Level Isolation Unit, HILU) à l’UZA (figure 3). Dans ces systèmes, l’air est aspiré à travers les filtres à l’aide d’un ventilateur. Les unités motorisées éliminent ainsi la résistance respiratoire (il ne faut pas respirer par un filtre) et conviennent aux porteurs de lunettes et pour les personnes barbues.

Des systèmes motorisés similaires (« Orthopedic Surgical Space Suits » ou « Filtered-Exhaust Helmets ») sont parfois également utilisés notamment dans le cadre de la chirurgie orthopédique avec insertion de matériel prothétique. Les Centres pour le contrôle et la prévention des maladies (CDC) ne se prononcent cependant pas sur la question dans les recommandations de 2017, en raison du manque de preuves concernant le bénéfice de ces dispositifs très onéreux dans le cadre de la prévention d’ISO (18). S’Il est vrai que le porteur est protégé contre les éclaboussures de sang, il existe néanmoins d’autres type de protections (p.ex. « facial shields ») tout aussi efficaces et moins coûteuses. L’efficacité de ces systèmes motorisés n’est pas clairement établie pour la protection contre les infections transmises par voie aérienne ; ces dispositifs ne sont en outre pas vendus sur le marché en tant que masques respiratoires.

Les systèmes motorisés sont également subdivisés en trois classes de performance, à savoir TH1, TH2 et TH3, où l’abréviation TH signifie « Turbo Hood » (tableau 4). La norme européenne EN 12941 définit trois classes de performances. Les chiffres du tableau 4 renseignent l’exigence de performance (fuite totale vers l’intérieur en %) ainsi que la résistance à la traction des tuyaux et raccords pour chaque classification. 

Tableau 4 : exigences de performance selon la norme EN 12941:1998/A2:2008

(*) Le niveau de fuite totale de vers l’intérieur réfère à la fois à l’efficacité de filtration inhérente au type de masque, à son degré de fuite (p.ex. au niveau des connexions avec le filtre) let également au degré de fuite vers l’intérieur entre la peau et le masque dans des conditions simulées de port chez des volontaires. 
(**) Selon la norme européenne EN 12941: 1998/A2 :2008, le facteur de protection nominale (FPN) = 100 / fuite totale vers l’intérieur (%)..Au plus la valeur du FPN est élevée, au plus le masque est efficace et la fuite vers l’intérieur basse. Ce facteur de protection indique donc la relation entre le niveau de contamination de l’air à l’extérieur et celui de l’air inspiré (à l’intérieur). 

C) Masques pour un patient souffrant d’une affection transmissible par voie aérienne

Les masques respiratoires avec valve respiratoire ne peuvent évidemment pas être portés par des patients souffrant d’une affection transmissible par voie aérienne lorsqu’ils quittent la chambre d’isolation pour se rendre à un examen. Ils portent donc un masque sans valve respiratoire ou un masque chirurgical.
Le port d’un masque sans valve respiratoire par le patient a pour but de réduire au maximum la contamination de l’air ambiant. Le masque forme une barrière vis-àvis des gouttelettes et empêche dès lors la formation d’aérosols. La recommandation du Conseil Supérieur de la Santé (CSS n°8579, Novembre 2013) stipule que tout patient atteint de tuberculose contagieuse (suspectée ou confirmée) doit porter un masque chirurgical (norme EN 14683 : 2006) lorsqu’il quitte la chambre d’isolement aérien. Les CDCs stipulent également que les patients souffrant de tuberculose doivent, outre le respect des mesures d’hygiène pendant la toux, porter un masque chirurgical et que le port d’un masque respiratoire par ces patients n’est pas nécessaire. En cas de tuberculose multirésistante, le port du masque est recommandé pendant les soins de longue durée effectués dans la chambre ainsi que lors des visites de la famille. L’utilisation appropriée du masque (pourquoi et comment il faut le porter) doit être bien expliquée au patient. Ce dernier doit recouvrir à la fois le nez et la bouche, et être suffisamment solide que pour résister à des sécrétions générées par la toux ou par des éternuements. Un masque résistant aux éclaboussures, conçu avec une couche plus résistante aux liquides, est préférable (type IR ou IIR selon la norme européenne). Il doit être changé lorsqu’il devient humide ou lorsqu’il se déchire (16,19).

D) Résumé des indications

Le tableau 5 reprend quelques exemples d’indications non limitatives pour un masque respiratoire dans le secteur des soins de santé.

Tableau 5 : Indications masque respiratoire

(*) Le “National Institute for Occupational Safety and Health” (NIOHS) recommande le port d’un masque respiratoire plutôt qu’un masque chirurgical spécifiquement en cas d’absence de systèmes d’aspiration de fumée ou en cas de fonctionnement suboptimal. Par ailleurs, le NIOHS recommande le port de masque respiratoire dans le cadre d’interventions reconnues associées à un risque de pathologies infectieuses transmissibles telles l’infection à HPV (19).
(**) L’Organisation Mondiale de la Santé (OMS) mentionne dans sa recommandation de 2014 le port d’un masque respiratoire de classe FFP2 ou FFP3 (20), tandis que dans une recommandation de protocole de prise en charge du MERS datant d’août 2019, Sciensano renseigne également le port d’un système motorisé (PAPR) mais sans donner plus de détails sur cette indication (21).

4. Comment porter un masque respiratoire ?

Compte tenu de la diversité des modèles et marques sur le marché, il est important d’utiliser le masque conformément aux directives du fabricant. En présence d’un arceau nasal, comme dans le type jetable, il doit d’abord être mis en forme en étant plié légèrement au milieu. Le masque doit recouvrir entièrement la bouche et le nez. Il est important de n’avoir aucune fuite. Il est possible de le vérifier facilement en inspirant profondément et expirant vigoureusement en cas de masque avec valve respiratoire. Si de l’air s’échappe au niveau de l’arceau nasal, il doit être remodelé. Les fuites latérales peuvent éventuellement être résolues par le repositionnement des lanières ou la remise en place du masque.

La morphologie du visage peut cependant être très différente d’une personne à l’autre. Il est dès lors peu probable qu’un modèle spécifique convienne à tous. D’autres facteurs peuvent avoir une influence sur l’étanchéité d’un masque respiratoire, tels :

  • La pilosité faciale. Les personnes qui portent un masque respiratoire ajusté doivent être rasées de près au niveau des bords du masque ;
  • Les lunettes. Des lunettes, qu’elles soient sur ordonnance ou de sécurité, ont également une influence sur l’étanchéité du masque et la personne qui porte des lunettes doit également les porter lors du fit testing ;

Fit testing

Outre l’efficacité de filtration et le confort, la forme (fit) du masque est également essentielle à une bonne protection. Pour déterminer si le masque a la forme adéquate, on réalise un test d’étanchéité (fit test). Ce type de test permet de détecter la présence éventuelle de fuites latérales et peut contribuer à une bonne étanchéité faciale. Il existe des méthodes qualitatives et quantitatives pour la réalisation du fit test. Le fit test qualitatif évalue la simplement la capacité de détection (qualitative) d’un goût, d’une odeur ou d’une fumée irritante par le porteur du masque. Ce test s’utilise aussi bien pour les masques jetables (uniquement test de goût) que pour les demi-masques filtrants. Le fit test quantitatif évalue la fuite en créant une dépression et mesure le nombre de particules présentes dans le masque et en dehors de celui-ci. Cette méthode convient pour les masques jetables, les demi-masques filtrants réutilisables ainsi que pour les masques complets réutilisables (22,23).

III. Références

  1. British Standards Institution. Medical face masks – Requirements and test methods. 30/04/2014.
  1. Van Laer F. Masques chirurgicaux. Noso-info, 2005; Vol. IX (2):15-17.
  1. Werkgroep Infectiepreventie (WIP). Infectiepreventie bij gebruik van laserapparatuur. Juin 2013.
  1. Vroegop JEM. Chirurgische rook maakt meer kapot dan je lief is. Een literatuurstudie naar de schadelijke effecten. Tijdschrift voor Hygiëne en Infectiepreventie, 2002;1:7-9.
  1. Werkgroep Infectiepreventie (WIP). Infectiepreventie bij het gebruik van laserinstrumentarium. Juin 1997.
  1. Uday Kelkar, Bageshri Gogate, Satish Kurpad et al. How effective are face masks in operation theatre? A time frame analysis and recommendations. Int J Infect Control 2013, v9:i1 doi: 10.3396/ijic.v9i1.003.13.
  1. Campagne gesteund door Mölnlycke Health Care. Aanstekelijk.be. Het gebruik van chirurgische maskers: OK in uw OK? Janvier 2010.
  1. CCLIN Sud-Ouest – Groupe Hospitalier Pellegrin. Recommandations pour l’utilisation des masques médicaux et des appareils de protection respiratoire dans les établissements de santé, 2006.
  1. Woodhead K, Taylor EW, Bannister G et al. Behaviours and rituals in the operating theatre. Journal of Hospital Infection, 2002;51: 241-255.
  1. WIP. Preventie van postoperatieve wondinfecties. Révision : mai 2011.
  1. Conseil Supérieur de la Santé Recommandations pour la prévention des infections post-opératoires au sein du quartier opératoire. Mai 2013. CSS n° 8573.
  1. McLure HA, Mannam M, Talboys CA et al. The effect of facial hair and sex on the dispersal of bacteria below a masked subject. Anesthesia, 2000 Feb;55(2):173-176.
  1. Institut scientifique de santé publique Emploi d’appareils de protection respiratoire durant l’utilisation confinée d’organismes génétiquement modifiés et/ou pathogènes (Gebruik van ademhalingsbeschermingsmiddelen bij het ingeperkt gebruik van genetisch gemodificeerde organismen en/of pathogenen),2007.
  1. Ka Man Wong C, Hon Kei Yip B, Mercer S et al. Effect of Facemasks on Empathy and Relational Continuity. BMC Fam Pract. 2013;14(200).
  1. Forgie SE, Reitsma J, Spady D, et al. The “fear factor” for surgical masksand face shields, as perceived by children and their parents. Pediatrics 2009;124:e777-e781.
  1. Conseil Supérieur de la Santé Avis n° 8579. Recommandations relatives à la prévention de la tuberculose dans les institutions de soins Novembre 2013
  1. Conseil Supérieur de la Santé Avis n° 9188. Recommandations pratiques concernant l’identification et la prise en charge de patients suspectés ou avérés être porteurs de virus hautement contagieux (de type Ebola ou Marburg) dans le cadre d’une bouffée épidémique en Afrique de l’Ouest, à l’attention des professionnels de la santé et des autorités sanitaires 4 juillet 2014.
  1. Berríos-Torres SI, Umscheid CA, Bratzler DW et al. Centers for Disease Control and Prevention Guideline for the Prevention of Surgical Site Infection, 2017. JAMA Surg., 2017;152(8):784-791. doi:10.1001/jamasurg.2017.0904.
  1. MMWR. Guidelines for Preventing the Transmission of Mycobacterium tuberculosis in Health-Care Settings, 2005;54;No. RR-17.
  1. World Health Organisation. Infection prevention and control of epidemic-and pandemic-prone acute respiratory infections in health care, 2014. WHO guidelines, april 2014.
  1. Sciensano. Procedure for case management for a suspicion of a middle east respiratory syndrome (MERS) coronavirus infection. Update August 2019.
  1. 3M. Zit uw masker goed? Fittest technische fiche. BSG 2015/13.072.
  1. Health and Safety Executive. Review of fit test pass criteria for Filtering Facepieces Class 3 (FFP3) Respirators. RR 1029, 2015.